Post-doctoral fellow in machine learning for distributed acoustic sensing over optical fiber networks - 24 months contract
Institut Mines-Télécom
il y a 10 jours
Date de publicationil y a 10 jours
S/O
Niveau d'expérienceS/O
Temps pleinType de contrat
Temps pleinSystèmes d'information / RéseauxCatégorie d'emploi
Systèmes d'information / RéseauxEn partie à distancePolitique de l'emploi à distance
En partie à distanceWho we are ?
Télécom Paris, part of the IMT (Institut Mines-Télécom) and a founding member of the Institut Polytechnique de Paris, is one of France's top 5 general engineering schools.
The mainspring of Télécom Paris is to train, imagine and undertake to design digital models, technologies and solutions for a society and economy that respect people and their environment.
We are looking for a Post-doctoral Fellow in machine learning for distributed acoustic sensing over optical fiber networks. You will join the COMELEC Department in GTO team. The Optical Telecommunications Group (GTO) is home to the research programs of six faculty members and a state-of-the-art laboratory on optical fiber transmission. We conduct advanced research in high-rate fiber-optic transmission, optical network architectures, advanced lasers for communications, integrated photonics, and distributed optical fiber sensors.
SCIENTIFIC CONTEXT
The concept of a smart city is based on the collection and exploitation of data extracted by numerous sensors providing information on vehicle traffic, the detection of human presence and numerous events affecting infrastructures (water and gas networks, buildings, bridges and tunnels, etc.). The current approach to collecting this information is to deploy a multitude of discrete, dedicated sensors or to deploy distributed, dedicated fiber optic detection cables. This deployment has a high logistical cost (installation, energy supply, maintenance). However, fiber-optic telecommunication networks already crisscross our cities: using this available infrastructure to capture, locate and identify vibration events is a very attractive approach. Much of the research into sensing over telecom infrastructure has replicated Distributed Acoustic Sensing (DAS) solutions, originally used on dedicated sensing cables. These solutions have yielded promising results in road/rail traffic monitoring and in measuring dynamics at the scale of an urban or regional area: near-surface characterization, detection of high levels of use of certain sites in times of crisis (as in the current COVID19 crisis) and other seismic events.
In the fields of DAS and geophysics, researchers regularly point out that DAS measurements on deployed fiber optic infrastructures are able to provide a coverage and a bandwidth that is not met with conventional discrete sensors such as seismometers. Despite this positive observation, DAS still lacks the sensitivity of conventional discrete sensors. The integration of powerful sensing techniques into the optical network will pave the way for improved real-time network monitoring and the provision of valuable data for a multitude of applications.
In an optical network, technical obstacles arise from the heterogeneity of topologies and fiber environments. In this project, we propose to take advantage of machine learning techniques to help in achieving event detection from DAS data measured over the deployed optical fiber telecom infrastructure. Characterising and locating these vibrations as accurately as possible, followed by identifying them using machine learning algorithms, opens the way to network monitoring and to the provision of valuable data for a multitude of applications (road/rail traffic supervision, security, monitoring of urban dynamics to detect hazards, particularly in times of crisis, etc.).
We plan to provide proofs-of-concept of machine learning solutions for DAS systems by dividing the study in two parts:
Your main tasks will be to :
Le candidat idéal possède un doctorat ou équivalent en communication, traitement de signal ou science des données). Vous avez des connaissances sur les algorithmes de traitement des signaux numériques et les techniques d'apprentissage automatique. Une connaissance des systèmes et des réseaux de transmission optique, et/ou des capteurs à fibre optique est souhaitée. Des compétences en programmation d'algorithmes DSP (via MATLAB ou Python) sont appréciées.
Vous êtes reconnu(e) pour votre capacité à travailler en équipe et vos qualités relationnelles.
Vous avez un niveau professionnel en anglais.
Pourquoi nous rejoindre ?
Vous travaillerez dans un environnement en plein développement, agréable, verdoyant et accessible (notamment pour les personnes en situation de handicap) à seulement 20 km de Paris (RER B et C, proximité des grands axes routiers, navette mutualisée en partance de la Porte d'Orléans). Vous bénéficierez de :
Informations diverses :
Date limite de candidature : 31 octobre 2025
Type d'emploi : CDD de 24 mois
Description de poste détaillée ici
Contact scientifique : Élie Awwad ([email protected])
Contact administratif : Hamidou Yaya Koné ([email protected])
Nos recrutements sont fondés sur les compétences, sans distinction d'origine, d'âge, d'identité de genre et d'orientation sexuelle et tous nos postes sont ouverts aux personnes en situation de handicap.
Télécom Paris, part of the IMT (Institut Mines-Télécom) and a founding member of the Institut Polytechnique de Paris, is one of France's top 5 general engineering schools.
The mainspring of Télécom Paris is to train, imagine and undertake to design digital models, technologies and solutions for a society and economy that respect people and their environment.
We are looking for a Post-doctoral Fellow in machine learning for distributed acoustic sensing over optical fiber networks. You will join the COMELEC Department in GTO team. The Optical Telecommunications Group (GTO) is home to the research programs of six faculty members and a state-of-the-art laboratory on optical fiber transmission. We conduct advanced research in high-rate fiber-optic transmission, optical network architectures, advanced lasers for communications, integrated photonics, and distributed optical fiber sensors.
SCIENTIFIC CONTEXT
The concept of a smart city is based on the collection and exploitation of data extracted by numerous sensors providing information on vehicle traffic, the detection of human presence and numerous events affecting infrastructures (water and gas networks, buildings, bridges and tunnels, etc.). The current approach to collecting this information is to deploy a multitude of discrete, dedicated sensors or to deploy distributed, dedicated fiber optic detection cables. This deployment has a high logistical cost (installation, energy supply, maintenance). However, fiber-optic telecommunication networks already crisscross our cities: using this available infrastructure to capture, locate and identify vibration events is a very attractive approach. Much of the research into sensing over telecom infrastructure has replicated Distributed Acoustic Sensing (DAS) solutions, originally used on dedicated sensing cables. These solutions have yielded promising results in road/rail traffic monitoring and in measuring dynamics at the scale of an urban or regional area: near-surface characterization, detection of high levels of use of certain sites in times of crisis (as in the current COVID19 crisis) and other seismic events.
In the fields of DAS and geophysics, researchers regularly point out that DAS measurements on deployed fiber optic infrastructures are able to provide a coverage and a bandwidth that is not met with conventional discrete sensors such as seismometers. Despite this positive observation, DAS still lacks the sensitivity of conventional discrete sensors. The integration of powerful sensing techniques into the optical network will pave the way for improved real-time network monitoring and the provision of valuable data for a multitude of applications.
In an optical network, technical obstacles arise from the heterogeneity of topologies and fiber environments. In this project, we propose to take advantage of machine learning techniques to help in achieving event detection from DAS data measured over the deployed optical fiber telecom infrastructure. Characterising and locating these vibrations as accurately as possible, followed by identifying them using machine learning algorithms, opens the way to network monitoring and to the provision of valuable data for a multitude of applications (road/rail traffic supervision, security, monitoring of urban dynamics to detect hazards, particularly in times of crisis, etc.).
We plan to provide proofs-of-concept of machine learning solutions for DAS systems by dividing the study in two parts:
- Compression of captured DAS data and study of most appropriate representations for the extraction of the main features from the data (wavelet representation, multi-resolution representation, triangulation, application of audio processing tools, etc.)
- Processing and identification of multiple vibration events that may happen simultaneously or that may have an impact over large portions of the deployed fiber cables.
Your main tasks will be to :
- To carry out research missions in the field of photonics
- To ensure supervision and tutoring missions
- To contribute to the reputation of the School, the Institut Mines-Télécom and the Institut Polytechnique de Paris
Le candidat idéal possède un doctorat ou équivalent en communication, traitement de signal ou science des données). Vous avez des connaissances sur les algorithmes de traitement des signaux numériques et les techniques d'apprentissage automatique. Une connaissance des systèmes et des réseaux de transmission optique, et/ou des capteurs à fibre optique est souhaitée. Des compétences en programmation d'algorithmes DSP (via MATLAB ou Python) sont appréciées.
Vous êtes reconnu(e) pour votre capacité à travailler en équipe et vos qualités relationnelles.
Vous avez un niveau professionnel en anglais.
Pourquoi nous rejoindre ?
Vous travaillerez dans un environnement en plein développement, agréable, verdoyant et accessible (notamment pour les personnes en situation de handicap) à seulement 20 km de Paris (RER B et C, proximité des grands axes routiers, navette mutualisée en partance de la Porte d'Orléans). Vous bénéficierez de :
- 49 jours de congés annuels (CA + RTT)
- flexibilité des horaires de travail (en fonction de l'activité du service)
- télétravail 1 à 3 jours/semaine possible
- Remboursement abonnement transports en commun à 75%
- Proximité de nombreuses infrastructures sportives, conciergerie, parking souterrain, restauration interne...
- Association du personnel au niveau de l'école et du ministère
- A savoir : nos cotisations sociales sont moins élevées que dans le secteur privé
Informations diverses :
Date limite de candidature : 31 octobre 2025
Type d'emploi : CDD de 24 mois
Description de poste détaillée ici
Contact scientifique : Élie Awwad ([email protected])
Contact administratif : Hamidou Yaya Koné ([email protected])
Nos recrutements sont fondés sur les compétences, sans distinction d'origine, d'âge, d'identité de genre et d'orientation sexuelle et tous nos postes sont ouverts aux personnes en situation de handicap.
RÉSUMÉ DE L' OFFRE
Post-doctoral fellow in machine learning for distributed acoustic sensing over optical fiber networks - 24 months contract
Institut Mines-Télécom
Palaiseau
il y a 10 jours
S/O
Temps plein
Post-doctoral fellow in machine learning for distributed acoustic sensing over optical fiber networks - 24 months contract